MathNet.Numerics.FSharp 4.7.0

F# Modules for Math.NET Numerics, the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net Framework 4.5 or higher and .Net Standard 1.6 or higher, on Windows, Linux and Mac.

There is a newer version of this package available.
See the version list below for details.
Install-Package MathNet.Numerics.FSharp -Version 4.7.0
dotnet add package MathNet.Numerics.FSharp --version 4.7.0
<PackageReference Include="MathNet.Numerics.FSharp" Version="4.7.0" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add MathNet.Numerics.FSharp --version 4.7.0
The NuGet Team does not provide support for this client. Please contact its maintainers for support.

Release Notes

Special Functions: Airy functions Ai, Bi ~Jong Hyun Kim
Special Functions: Bessel functions of the first and second kind ~Jong Hyun Kim
Special Functions: Modified Bessel functions of the first and second kind ~Jong Hyun Kim
Special Functions: Spherical Bessel functions of the first and second kind ~Jong Hyun Kim
Special Functions: Hankel functions of the first and second kind ~Jong Hyun Kim
Special Functions: Kelvin functions of the first and second kind, and derivatives ~Jong Hyun Kim
Linear Algebra: optimized sparse implementation of transpose-multiply ~Richard Reader
Linear Algebra: optimized range checking in vectors and matrices

Showing the top 2 GitHub repositories that depend on MathNet.Numerics.FSharp:

Repository Stars
mathnet/mathnet-numerics
Math.NET Numerics
NethermindEth/nethermind
Our flagship .NET Core Ethereum client for Linux, Windows, MacOs - full and actively developed

Version History

Version Downloads Last updated
4.9.0 2,501 10/13/2019
4.8.1 8,940 6/11/2019
4.8.0 871 6/2/2019
4.8.0-beta02 83 5/30/2019
4.8.0-beta01 111 4/28/2019
4.7.0 27,292 11/11/2018
4.6.0 1,698 10/19/2018
4.5.1 18,299 5/22/2018
4.5.0 265 5/22/2018
4.4.1 535 5/6/2018
4.4.0 11,115 2/25/2018
4.3.0 302 2/24/2018
4.2.0 481 2/21/2018
4.1.0 534 2/19/2018
4.0.0 2,046 2/11/2018
4.0.0-beta07 257 2/10/2018
4.0.0-beta06 266 2/3/2018
4.0.0-beta05 263 1/22/2018
4.0.0-beta04 284 1/13/2018
4.0.0-beta03 271 1/9/2018
4.0.0-beta02 344 1/7/2018
4.0.0-beta01 245 1/7/2018
4.0.0-alpha04 238 1/5/2018
4.0.0-alpha03 244 12/26/2017
4.0.0-alpha02 271 11/30/2017
4.0.0-alpha01 230 11/26/2017
3.20.2 3,493 1/22/2018
3.20.1 473 1/13/2018
3.20.0 26,686 7/15/2017
3.20.0-beta01 300 5/31/2017
3.19.0 5,479 4/29/2017
3.18.0 3,392 4/9/2017
3.17.0 7,706 1/15/2017
3.16.0 866 1/3/2017
3.15.0 421 12/27/2016
3.14.0-beta03 318 11/20/2016
3.14.0-beta02 287 11/15/2016
3.14.0-beta01 328 10/30/2016
3.13.1 54,117 9/6/2016
3.13.0 683 8/18/2016
3.12.0 2,662 7/3/2016
3.11.1 2,459 4/24/2016
3.11.0 5,084 2/13/2016
3.10.0 3,515 12/30/2015
3.9.0 1,805 11/25/2015
3.8.0 19,762 9/26/2015
3.7.1 3,153 9/21/2015
3.7.0 7,871 5/9/2015
3.6.0 1,599 3/22/2015
3.5.0 2,263 1/10/2015
3.4.0 549 1/4/2015
3.3.0 1,568 11/26/2014
3.3.0-beta2 361 10/25/2014
3.3.0-beta1 412 9/28/2014
3.2.3 21,182 9/6/2014
3.2.2 421 9/5/2014
3.2.1 605 8/5/2014
3.2.0 387 8/5/2014
3.1.0 3,112 7/20/2014
3.0.2 795 6/26/2014
3.0.1 431 6/24/2014
3.0.0 910 6/21/2014
3.0.0-beta05 425 6/20/2014
3.0.0-beta04 395 6/15/2014
3.0.0-beta03 409 6/5/2014
3.0.0-beta02 406 5/29/2014
3.0.0-beta01 731 4/14/2014
3.0.0-alpha9 403 3/29/2014
3.0.0-alpha8 405 2/26/2014
3.0.0-alpha7 461 12/30/2013
3.0.0-alpha6 526 12/2/2013
3.0.0-alpha5 505 10/2/2013
3.0.0-alpha4 455 9/22/2013
3.0.0-alpha1 399 9/1/2013
2.6.0 7,046 7/26/2013
2.5.0 1,063 4/14/2013
2.4.0 753 2/3/2013
2.3.0 716 11/25/2012
2.2.1 747 8/29/2012
2.2.0 527 8/27/2012
2.1.2 1,903 10/9/2011
2.1.1 690 10/3/2011
2.1.0.19 656 10/3/2011
Show less