MathNet.Numerics.FSharp 3.0.0-beta04

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports F# 3.0 on .Net 4.0 and Mono on Windows, Linux and Mac; Silverlight 5, WindowsPhone/SL 8, WindowsPhone 8.1 and Windows 8 with PCL Portable Profiles 47 and 344; Android/iOS with Xamarin.

This is a prerelease version of MathNet.Numerics.FSharp.
There is a newer version of this package available.
See the version list below for details.
Install-Package MathNet.Numerics.FSharp -Version 3.0.0-beta04
dotnet add package MathNet.Numerics.FSharp --version 3.0.0-beta04
<PackageReference Include="MathNet.Numerics.FSharp" Version="3.0.0-beta04" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add MathNet.Numerics.FSharp --version 3.0.0-beta04
The NuGet Team does not provide support for this client. Please contact its maintainers for support.

Release Notes

Candidate for v3.0 Release
Linear Algebra:
FoldRows renamed to FoldByRow, now operates on and returns arrays; same for columns
New FoldRows and ReduceRows that operate on row vectors; same for columns
Split Map into Map and MapConvert (allows optimization in common in-place case)
Row and columns sums and absolute-sums
F# DiagonalMatrix module to create diagonal matrices without using the builder
F# Matrix module extended with sumRows, sumAbsRows, normRows; same for columns
Build: extend build and release automation, automatic releases also for data extensions and native providers

Showing the top 2 GitHub repositories that depend on MathNet.Numerics.FSharp:

Repository Stars
mathnet/mathnet-numerics
Math.NET Numerics
NethermindEth/nethermind
Our flagship .NET Core Ethereum client for Linux, Windows, MacOs - full and actively developed

Version History

Version Downloads Last updated
4.9.0 2,129 10/13/2019
4.8.1 8,617 6/11/2019
4.8.0 870 6/2/2019
4.8.0-beta02 83 5/30/2019
4.8.0-beta01 111 4/28/2019
4.7.0 27,061 11/11/2018
4.6.0 1,690 10/19/2018
4.5.1 18,289 5/22/2018
4.5.0 265 5/22/2018
4.4.1 535 5/6/2018
4.4.0 11,110 2/25/2018
4.3.0 302 2/24/2018
4.2.0 480 2/21/2018
4.1.0 534 2/19/2018
4.0.0 2,039 2/11/2018
4.0.0-beta07 257 2/10/2018
4.0.0-beta06 266 2/3/2018
4.0.0-beta05 263 1/22/2018
4.0.0-beta04 284 1/13/2018
4.0.0-beta03 270 1/9/2018
4.0.0-beta02 344 1/7/2018
4.0.0-beta01 245 1/7/2018
4.0.0-alpha04 238 1/5/2018
4.0.0-alpha03 244 12/26/2017
4.0.0-alpha02 271 11/30/2017
4.0.0-alpha01 230 11/26/2017
3.20.2 3,481 1/22/2018
3.20.1 473 1/13/2018
3.20.0 26,447 7/15/2017
3.20.0-beta01 300 5/31/2017
3.19.0 5,479 4/29/2017
3.18.0 3,369 4/9/2017
3.17.0 7,677 1/15/2017
3.16.0 866 1/3/2017
3.15.0 421 12/27/2016
3.14.0-beta03 318 11/20/2016
3.14.0-beta02 287 11/15/2016
3.14.0-beta01 328 10/30/2016
3.13.1 53,881 9/6/2016
3.13.0 683 8/18/2016
3.12.0 2,662 7/3/2016
3.11.1 2,459 4/24/2016
3.11.0 5,084 2/13/2016
3.10.0 3,515 12/30/2015
3.9.0 1,804 11/25/2015
3.8.0 19,734 9/26/2015
3.7.1 3,153 9/21/2015
3.7.0 7,869 5/9/2015
3.6.0 1,599 3/22/2015
3.5.0 2,262 1/10/2015
3.4.0 549 1/4/2015
3.3.0 1,568 11/26/2014
3.3.0-beta2 361 10/25/2014
3.3.0-beta1 412 9/28/2014
3.2.3 21,001 9/6/2014
3.2.2 421 9/5/2014
3.2.1 604 8/5/2014
3.2.0 387 8/5/2014
3.1.0 3,112 7/20/2014
3.0.2 795 6/26/2014
3.0.1 431 6/24/2014
3.0.0 910 6/21/2014
3.0.0-beta05 425 6/20/2014
3.0.0-beta04 395 6/15/2014
3.0.0-beta03 409 6/5/2014
3.0.0-beta02 406 5/29/2014
3.0.0-beta01 731 4/14/2014
3.0.0-alpha9 403 3/29/2014
3.0.0-alpha8 405 2/26/2014
3.0.0-alpha7 461 12/30/2013
3.0.0-alpha6 526 12/2/2013
3.0.0-alpha5 505 10/2/2013
3.0.0-alpha4 455 9/22/2013
3.0.0-alpha1 398 9/1/2013
2.6.0 6,996 7/26/2013
2.5.0 1,063 4/14/2013
2.4.0 753 2/3/2013
2.3.0 716 11/25/2012
2.2.1 747 8/29/2012
2.2.0 527 8/27/2012
2.1.2 1,877 10/9/2011
2.1.1 689 10/3/2011
2.1.0.19 656 10/3/2011
Show less