MathNet.Numerics.FSharp.Signed 4.7.0

F# Modules for Math.NET Numerics, the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net Framework 4.5 or higher and .Net Standard 1.6 or higher, on Windows, Linux and Mac. This package contains strong-named assemblies for legacy use cases (not recommended).

There is a newer version of this package available.
See the version list below for details.
Install-Package MathNet.Numerics.FSharp.Signed -Version 4.7.0
dotnet add package MathNet.Numerics.FSharp.Signed --version 4.7.0
<PackageReference Include="MathNet.Numerics.FSharp.Signed" Version="4.7.0" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add MathNet.Numerics.FSharp.Signed --version 4.7.0
The NuGet Team does not provide support for this client. Please contact its maintainers for support.

Release Notes

Special Functions: Airy functions Ai, Bi ~Jong Hyun Kim
Special Functions: Bessel functions of the first and second kind ~Jong Hyun Kim
Special Functions: Modified Bessel functions of the first and second kind ~Jong Hyun Kim
Special Functions: Spherical Bessel functions of the first and second kind ~Jong Hyun Kim
Special Functions: Hankel functions of the first and second kind ~Jong Hyun Kim
Special Functions: Kelvin functions of the first and second kind, and derivatives ~Jong Hyun Kim
Linear Algebra: optimized sparse implementation of transpose-multiply ~Richard Reader
Linear Algebra: optimized range checking in vectors and matrices

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version History

Version Downloads Last updated
4.12.0 159 8/2/2020
4.11.0 156 5/24/2020
4.10.0 132 5/24/2020
4.9.1 154 4/12/2020
4.9.0 171 10/13/2019
4.8.1 197 6/11/2019
4.8.0 203 6/2/2019
4.8.0-beta02 185 5/30/2019
4.8.0-beta01 180 4/28/2019
4.7.0 315 11/11/2018
4.6.0 270 10/19/2018
4.5.0 416 5/22/2018
4.4.1 393 5/6/2018
3.20.2 453 1/22/2018
3.20.1 403 1/13/2018
3.20.0 542 7/15/2017
3.20.0-beta01 367 5/31/2017
3.19.0 439 4/29/2017
3.18.0 415 4/9/2017
3.17.0 471 1/15/2017
3.16.0 425 1/3/2017
3.15.0 437 12/27/2016
3.14.0-beta03 419 11/20/2016
3.14.0-beta02 384 11/15/2016
3.14.0-beta01 402 10/30/2016
3.13.1 478 9/6/2016
3.13.0 424 8/18/2016
3.12.0 480 7/3/2016
3.11.1 571 4/24/2016
3.11.0 610 2/13/2016
3.10.0 570 12/30/2015
3.9.0 536 11/25/2015
3.8.0 535 9/26/2015
3.7.1 539 9/21/2015
3.7.0 706 5/9/2015
3.6.0 740 3/22/2015
3.5.0 659 1/10/2015
3.4.0 501 1/4/2015
3.3.0 533 11/26/2014
3.3.0-beta2 561 10/25/2014
3.3.0-beta1 499 9/28/2014
3.2.3 700 9/6/2014
3.2.2 526 9/5/2014
3.2.1 566 8/5/2014
3.2.0 555 8/5/2014
3.1.0 556 7/20/2014
3.0.2 531 6/26/2014
3.0.1 513 6/24/2014
3.0.0 510 6/21/2014
3.0.0-beta05 463 6/20/2014
3.0.0-beta04 486 6/15/2014
3.0.0-beta03 491 6/5/2014
3.0.0-beta02 506 5/29/2014
3.0.0-beta01 539 4/14/2014
3.0.0-alpha9 496 3/29/2014
3.0.0-alpha8 472 2/26/2014
3.0.0-alpha7 465 12/30/2013
3.0.0-alpha6 477 12/2/2013
3.0.0-alpha5 553 10/2/2013
Show less