MathNet.Numerics.FSharp.Signed
3.11.0
Prefix Reserved
See the version list below for details.
dotnet add package MathNet.Numerics.FSharp.Signed --version 3.11.0
NuGet\Install-Package MathNet.Numerics.FSharp.Signed -Version 3.11.0
<PackageReference Include="MathNet.Numerics.FSharp.Signed" Version="3.11.0" />
paket add MathNet.Numerics.FSharp.Signed --version 3.11.0
#r "nuget: MathNet.Numerics.FSharp.Signed, 3.11.0"
// Install MathNet.Numerics.FSharp.Signed as a Cake Addin #addin nuget:?package=MathNet.Numerics.FSharp.Signed&version=3.11.0 // Install MathNet.Numerics.FSharp.Signed as a Cake Tool #tool nuget:?package=MathNet.Numerics.FSharp.Signed&version=3.11.0
Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0.
Product | Versions Compatible and additional computed target framework versions. |
---|---|
.NET Framework | net40 is compatible. net403 was computed. net45 was computed. net451 was computed. net452 was computed. net46 was computed. net461 was computed. net462 was computed. net463 was computed. net47 was computed. net471 was computed. net472 was computed. net48 was computed. net481 was computed. |
-
- FSharp.Core (>= 3.1.2.5)
- MathNet.Numerics.Signed (= 3.11.0)
NuGet packages
This package is not used by any NuGet packages.
GitHub repositories
This package is not used by any popular GitHub repositories.
Version | Downloads | Last updated |
---|---|---|
5.0.0 | 1,628 | 4/3/2022 |
5.0.0-beta02 | 184 | 4/3/2022 |
5.0.0-beta01 | 171 | 3/6/2022 |
5.0.0-alpha16 | 178 | 2/27/2022 |
5.0.0-alpha15 | 188 | 2/27/2022 |
5.0.0-alpha14 | 187 | 2/27/2022 |
5.0.0-alpha11 | 184 | 2/27/2022 |
5.0.0-alpha10 | 174 | 2/19/2022 |
5.0.0-alpha09 | 178 | 2/13/2022 |
5.0.0-alpha08 | 191 | 12/23/2021 |
5.0.0-alpha07 | 175 | 12/19/2021 |
5.0.0-alpha06 | 200 | 12/19/2021 |
5.0.0-alpha05 | 187 | 12/19/2021 |
5.0.0-alpha04 | 202 | 12/19/2021 |
5.0.0-alpha03 | 188 | 12/5/2021 |
5.0.0-alpha02 | 239 | 7/11/2021 |
5.0.0-alpha01 | 323 | 6/27/2021 |
4.15.0 | 730 | 1/7/2021 |
4.14.0 | 576 | 1/1/2021 |
4.13.0 | 438 | 12/30/2020 |
4.12.0 | 663 | 8/2/2020 |
4.11.0 | 785 | 5/24/2020 |
4.10.0 | 613 | 5/24/2020 |
4.9.1 | 613 | 4/12/2020 |
4.9.0 | 636 | 10/13/2019 |
4.8.1 | 707 | 6/11/2019 |
4.8.0 | 692 | 6/2/2019 |
4.8.0-beta02 | 498 | 5/30/2019 |
4.8.0-beta01 | 515 | 4/28/2019 |
4.7.0 | 949 | 11/11/2018 |
4.6.0 | 877 | 10/19/2018 |
4.5.0 | 1,096 | 5/22/2018 |
4.4.1 | 1,070 | 5/6/2018 |
3.20.2 | 7,669 | 1/22/2018 |
3.20.1 | 1,077 | 1/13/2018 |
3.20.0 | 1,181 | 7/15/2017 |
3.20.0-beta01 | 807 | 5/31/2017 |
3.19.0 | 1,079 | 4/29/2017 |
3.18.0 | 1,060 | 4/9/2017 |
3.17.0 | 1,118 | 1/15/2017 |
3.16.0 | 1,053 | 1/3/2017 |
3.15.0 | 1,077 | 12/27/2016 |
3.14.0-beta03 | 868 | 11/20/2016 |
3.14.0-beta02 | 843 | 11/15/2016 |
3.14.0-beta01 | 833 | 10/30/2016 |
3.13.1 | 1,118 | 9/6/2016 |
3.13.0 | 1,044 | 8/18/2016 |
3.12.0 | 1,142 | 7/3/2016 |
3.11.1 | 1,402 | 4/24/2016 |
3.11.0 | 1,340 | 2/13/2016 |
3.10.0 | 1,234 | 12/30/2015 |
3.9.0 | 1,303 | 11/25/2015 |
3.8.0 | 1,246 | 9/26/2015 |
3.7.1 | 1,243 | 9/21/2015 |
3.7.0 | 1,374 | 5/9/2015 |
3.6.0 | 1,434 | 3/22/2015 |
3.5.0 | 1,354 | 1/10/2015 |
3.4.0 | 1,192 | 1/4/2015 |
3.3.0 | 1,340 | 11/26/2014 |
3.3.0-beta2 | 1,088 | 10/25/2014 |
3.3.0-beta1 | 990 | 9/28/2014 |
3.2.3 | 1,404 | 9/6/2014 |
3.2.2 | 1,219 | 9/5/2014 |
3.2.1 | 1,254 | 8/5/2014 |
3.2.0 | 1,211 | 8/5/2014 |
3.1.0 | 1,242 | 7/20/2014 |
3.0.2 | 1,249 | 6/26/2014 |
3.0.1 | 1,231 | 6/24/2014 |
3.0.0 | 1,214 | 6/21/2014 |
3.0.0-beta05 | 975 | 6/20/2014 |
3.0.0-beta04 | 994 | 6/15/2014 |
3.0.0-beta03 | 1,013 | 6/5/2014 |
3.0.0-beta02 | 994 | 5/29/2014 |
3.0.0-beta01 | 1,188 | 4/14/2014 |
3.0.0-alpha9 | 1,071 | 3/29/2014 |
3.0.0-alpha8 | 1,053 | 2/26/2014 |
3.0.0-alpha7 | 964 | 12/30/2013 |
3.0.0-alpha6 | 1,027 | 12/2/2013 |
3.0.0-alpha5 | 1,111 | 10/2/2013 |
Special Functions: error functions to use static coefficient arrays (perf) ~Joel Sleppy
Integration: Gauss-Legendre Rule (1D, 2D) ~Larz White
Complex: more robust magnitude and division for numbers close to MaxValue or Epsilon ~MaLiN2223
Native Providers: lazy default provider discovery & initialization ~Kuan Bartel
FSharp Package: Quaternion type ~Phil Cleveland