nanoFramework.Iot.Device.RotaryEncoder 1.0.277-preview.98

Prefix Reserved
This is a prerelease version of nanoFramework.Iot.Device.RotaryEncoder.
There is a newer version of this package available.
See the version list below for details.
dotnet add package nanoFramework.Iot.Device.RotaryEncoder --version 1.0.277-preview.98                
NuGet\Install-Package nanoFramework.Iot.Device.RotaryEncoder -Version 1.0.277-preview.98                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="nanoFramework.Iot.Device.RotaryEncoder" Version="1.0.277-preview.98" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add nanoFramework.Iot.Device.RotaryEncoder --version 1.0.277-preview.98                
#r "nuget: nanoFramework.Iot.Device.RotaryEncoder, 1.0.277-preview.98"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install nanoFramework.Iot.Device.RotaryEncoder as a Cake Addin
#addin nuget:?package=nanoFramework.Iot.Device.RotaryEncoder&version=1.0.277-preview.98&prerelease

// Install nanoFramework.Iot.Device.RotaryEncoder as a Cake Tool
#tool nuget:?package=nanoFramework.Iot.Device.RotaryEncoder&version=1.0.277-preview.98&prerelease                

Quadrature Rotary Encoder

A Rotary encoder is a device that detects angular position. One use of this is similar to a volume control on an FM radio where the user turns a shaft and the loudness of the broadcast is changed. Incremental rotary encoders do not provide information on their exact position but supply information about how much they have moved and in which direction.

Board

image of rotary encoder

Typically a quadrature rotary encoder will have two outputs A and B, perhaps called clock and data. For each part of a rotation then the A pin will provide a clock signal and the B pin will provide a data signal that is out of phase with the clock. The sign of the phase difference between the pins indicates the direction of rotation.

encoder

From above if we look at Pin B (data) at the time of a falling edge on Pin A (clk) then the if the value of pin P is 1 then the direction is clockwise and if it is 0 then the rotation is counter clockwise.

Usage

This sample shows how to implement an FM radio tuner control using the ScaledQuadradureEncoder binding. It simply prints the tuner value to the console as the knob is turned.

rotary example

This binding implements scaled quadrature rotary encoder as ScaledQuadratureEncoder. The value is a double. You can for example set it up as a tuning dial for an FM radio with a range of 88.0 to 108.0 with a step of 0.1.

The code below shows an example of using the encoder as an FM tuner control.

// create a RotaryEncoder that represents an FM Radio tuning dial with a range of 88 -> 108 MHz
ScaledQuadratureEncoder encoder = new ScaledQuadratureEncoder(pinA: 5, pinB: 6, PinEventTypes.Falling, pulsesPerRotation: 20, pulseIncrement: 0.1, rangeMin: 88.0, rangeMax: 108.0) { Value = 88 };
// 2 milliseconds debonce time
encoder.Debounce = TimeSpan.FromMilliseconds(2);
// Register to Value change events
encoder.ValueChanged += (o, e) =>
{
    Debug.WriteLine($"Tuned to {e.Value}MHz");
};

This binding also features

  • Debounce functionality on the clock signal.
  • Acceleration so that rotating the encoder moves it further the faster the rotation.
  • Events when the value changes.

Also available is a QuadratureRotaryEncoder binding which has properties that represent the rotation of the encoder and the raw pulses.

Limitations

This binding is suitable for manual and small rotations where it is not a big deal if one or few rotations may be lost.

This binding is not suitable for motor control with a very high rate and very precise number of counts.

The precision really depends of the hardware you are using and it is not possible to give specific range of usage. You may have to try to understand if this is working for you or not.

Product Compatible and additional computed target framework versions.
.NET Framework net is compatible. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
1.2.673 78 10/23/2024
1.2.662 79 10/11/2024
1.2.631 91 8/28/2024
1.2.590 100 7/17/2024
1.2.570 100 6/14/2024
1.2.560 103 5/29/2024
1.2.548 88 5/15/2024
1.2.436 253 11/10/2023
1.2.416 123 11/8/2023
1.2.329 214 5/26/2023
1.2.313 190 5/12/2023
1.2.297 198 5/3/2023
1.2.208 366 1/3/2023
1.2.203 350 12/28/2022
1.2.159 433 11/14/2022
1.2.153 411 11/5/2022
1.2.141 450 10/25/2022
1.2.128 430 10/22/2022
1.2.125 456 10/12/2022
1.2.122 510 10/12/2022
1.2.114 468 10/8/2022
1.2.95 474 9/22/2022
1.2.87 523 9/15/2022
1.2.73 455 9/8/2022
1.1.116.8772 486 6/24/2022
1.1.113.2032 469 6/23/2022
1.1.58.10097 478 5/23/2022
1.1.3 492 4/15/2022
1.1.1 472 4/14/2022
1.0.277-preview.126 121 3/25/2022
1.0.277-preview.125 117 3/25/2022
1.0.277-preview.112 115 3/19/2022
1.0.277-preview.111 122 3/18/2022
1.0.277-preview.106 132 3/15/2022
1.0.277-preview.99 120 3/10/2022
1.0.277-preview.98 120 3/8/2022
1.0.277-preview.60 139 2/4/2022
1.0.277-preview.53 136 1/31/2022
1.0.277-preview.32 144 1/27/2022
1.0.277-preview.17 133 1/24/2022
1.0.277-preview.15 130 1/21/2022
1.0.277-preview.1 134 1/11/2022
1.0.259 355 12/9/2021
1.0.218 202 10/18/2021
1.0.155 391 8/31/2021
1.0.135 171 7/16/2021
1.0.134 171 7/15/2021
1.0.133 190 7/14/2021
1.0.125 200 7/5/2021
1.0.121 201 6/29/2021
1.0.119 230 6/28/2021
1.0.25 204 5/21/2021