TDG.Abstractions
0.2.2
See the version list below for details.
dotnet add package TDG.Abstractions --version 0.2.2
NuGet\Install-Package TDG.Abstractions -Version 0.2.2
<PackageReference Include="TDG.Abstractions" Version="0.2.2" />
paket add TDG.Abstractions --version 0.2.2
#r "nuget: TDG.Abstractions, 0.2.2"
// Install TDG.Abstractions as a Cake Addin #addin nuget:?package=TDG.Abstractions&version=0.2.2 // Install TDG.Abstractions as a Cake Tool #tool nuget:?package=TDG.Abstractions&version=0.2.2
TestDataGenerator
An utility capable of producing simple datasets with test data with accordance to user-provided patterns and settings. Datasets can be afterwards exported to JSON and CSV files as well as to database table.
Wiki
If you need any help with app usage take a look through <strong>project wiki</strong>.
Downloads
Quickstart guide
Basic usage scenario <a name="basic-usage-scenario"></a>
- Define data columns
- Setup columns
- Combine columns into columnset
- Create dataset
- Generate data
These steps can be illustrated in a sample console application code below:
using System;
using System.Globalization;
using System.Linq;
using TestDataGenerator.Abstractions.Interfaces.Rows;
using TestDataGenerator.Core;
using TestDataGenerator.Core.Columns;
using TestDataGenerator.Core.ValueGenerators;
using TestDataGenerator.Core.ValueGenerators.ValueRangeGenerator;
namespace TestDataGeneratorSample
{
class Program
{
static void Main(string[] args)
{
// Set up first column
Column integerColumn = new Column(new ColumnSettings()
{
ColumnName = "Column1",
Culture = CultureInfo.InvariantCulture,
TargetValueType = typeof(int),
ValueSupplier = new ValueRangeValueGenerator(new ValueRange(0, 100))
});
// Set up second column
string[] stringValuesToSelectFrom = new string[] {
"Tom", "Matthew", "Earl", "Tony", "Jane", "Pam"
};
Column stringColumn = new Column(new ColumnSettings()
{
ColumnName = "Column2",
Culture = CultureInfo.InvariantCulture,
TargetValueType = typeof(string),
ValueSupplier = new SelectFromListValueGenerator(stringValuesToSelectFrom.Cast<object>())
});
// Combine columns into column set
ColumnSet colSet = new ColumnSet(new Column[] { integerColumn, stringColumn });
// Create dataset
TestDataSet dset = new TestDataSet("MyFirstDataset", colSet);
// Check if dataset is ready to generate some data for you (optional)
bool isDatasetReady = dset.CanGenerateDataSet(out string err);
// If everything is ok, generate 20 rows of data
if (isDatasetReady)
{
IRow[] resultRows = dset.GenerateNewDataSet(20);
// Print data to console window
Console.WriteLine(string.Join("\t", dset.GetColumns().Select(col => col.GetColumnName())));
foreach (var row in resultRows)
Console.WriteLine(string.Join("\t", row));
}
}
}
}
One of possible outputs of the program above:
Column1 Column2
18 Tom
13 Tony
31 Tony
25 Jane
60 Tony
19 Tom
62 Tony
48 Tony
81 Tony
87 Tony
90 Tony
18 Tony
82 Tom
21 Earl
33 Tony
98 Pam
17 Tom
92 Jane
28 Tony
100 Tony
Column and ColumnSettings <a name="column-and-column-settings"></a>
Column is basic entity which represents a single... well, column in a dataset. Despite the fact that column is supposed to be part of dataset, it still can be used on its own to generate a one-dimensional array of objects using provided ColumnSettings:
// setting up the column
Column exampleColumn = new Column(new ColumnSettings() {
ColumnName = "Column1", // name
TargetValueType = typeof(string), // desired output values type
Culture = CultureInfo.InvariantCulture, // input/output formats of values
ValueSupplier = new SelectFromListValueGenerator(
new object[] { 1.15, new DateTime(1990, 1, 1), true, "somestring" } // array of items to select from
)
});
// generating 15 values
const int valuesToGenerate = 15;
object[] generatedValues = new object[valuesToGenerate];
for (int i = 0; i < valuesToGenerate; i++)
generatedValues[i] = exampleColumn.GenerateValue(); // generate single value
// printing result to console
Console.Write(string.Join("\r\n", generatedValues));
Example of program output:
True
True
01.01.1990 0:00:00
1,15
somestring
somestring
01.01.1990 0:00:00
somestring
True
01.01.1990 0:00:00
True
1,15
1,15
1,15
True
Currently, ColumnSettings has following parameters:
- ColumnName. Can be arbitrary one.
- TargetValueType. Desired output value type. At moment, following types are supported: <strong>int, double, string, bool, DateTime</strong>.
- Culture. Input and output format for values.
- ValueSupplier. One of value generators, please refer to Value generators section
Value generators <a name="value-generators"></a>
Value generators are classes which implement IValueGenerator interface. This makes them capable of producing random values using specific logic describe in GenerateValue() method. For now, three variations of value generators are implemented:
- ValuePatternParser. This value generator returns values based on Regex-like input strings. ValuePatternParser exposes bool PatternIsValid property which defines, whether provided string pattern correct or not. Here are some usage examples:
// will generate integer values from 1 to 99
Column intColumn = new Column(new ColumnSettings() {
ColumnName = "IntCol",
Culture = CultureInfo.InvariantCulture,
TargetValueType = typeof(int),
ValueSupplier = new ValuePatternParser("[1-9][0-9]{0-1}")
});
// [1-9] tells generator to get one digit from 1 to 9
// [0-9]{0-1} tells to pick either no or one value from range 0 to 9
// will generate double values within 0.00-0.99 range
Column doubleColumn = new Column(new ColumnSettings() {
ColumnName = "DoubleCol",
Culture = CultureInfo.InvariantCulture,
TargetValueType = typeof(double),
ValueSupplier = new ValuePatternParser("[0][.][0-9]{2}")
});
// [0] tells always to put 0 digit first
// [.] always sets '.' in second position
// [0-9]{2} makes generator to select exactly two digits from 0-9 range
// generates string like vehicle registration number: 'XX 11 1111'
Column strColumn = new Column(new ColumnSettings() {
ColumnName = "StrCol",
Culture = CultureInfo.InvariantCulture,
TargetValueType = typeof(string),
ValueSupplier = new ValuePatternParser("[A-Z]{2}[ ][0-9]{2}[ ][0-9]{3}")
});
// Possible output:
// HQ 27 827
// JE 16 039
// RL 16 204
// YI 05 050
// ZM 05 454
// EP 25 150
// WD 90 999
- SelectFromListValueGenerator. Select random value from supplied object[] array. Usage example:
// randomly select from supplied assortment of values and convert thos values to string type
Column fromListSelectColumn = new Column(new ColumnSettings() {
ColumnName = "TestColumn",
Culture = CultureInfo.InvariantCulture,
TargetValueType = typeof(string),
ValueSupplier = new SelectFromListValueGenerator(
new object[] { 1.123, 41, 53.1, true, "str1", "str2" }
)
});
- ValueRangeValueGenerator. Select any value between provided range of <strong>int, double or DateTime</strong>. Code example:
// selects integer from 0 to 1000
Column fromListSelectColumn = new Column(new ColumnSettings() {
ColumnName = "TestColumn",
Culture = CultureInfo.InvariantCulture,
TargetValueType = typeof(int),
ValueSupplier = new ValueRangeValueGenerator(
new ValueRange(0, 1000)
)
});
- IncrementalValueGenerator. Set starting value, maximum value and value step to get items with regular step increase (or decrease). Available for <strong>int, double and DateTime</strong>. Beware not to exceed upper bound since this thing is not yet controlled by API. Example:
// get values from 0 to 10 with regular step of 0.25
Column exampleColumn = new Column(new ColumnSettings()
{
ColumnName = "Column1",
TargetValueType = typeof(double),
Culture = CultureInfo.InvariantCulture,
ValueSupplier = new IncrementalValueGenerator(new ValueIncrement(0.00, 10.00, 0.25))
// beware that maximum amount of generatable values here is (10.00 - 0.00) / 0.25 = 40 + 1
});
ColumnSet <a name="columnset"></a>
ColumnSet class unites several columns into one entity. This makes possible to generate rows of values using GetNewRow() method:
// setup columns
Column col1 = new Column(new ColumnSettings() {
ColumnName = "col1",
Culture = CultureInfo.InvariantCulture,
TargetValueType = typeof(string),
ValueSupplier = new ValuePatternParser("[A-z]{5}")
});
Column col2 = new Column(new ColumnSettings()
{
ColumnName = "col2",
Culture = CultureInfo.InvariantCulture,
TargetValueType = typeof(int),
ValueSupplier = new ValuePatternParser("[0-9]{5}")
});
// create columnset
Column[] columns = new Column[] { col1, col2 };
ColumnSet colSet = new ColumnSet(columns);
// generate row
object[] rowOfValues = colSet.GetNewRow();
// print out
Console.WriteLine(string.Join("; ", rowOfValues)); // TwsYB; 53674
ColumnSet can be serialized to JSON (and deserialized as well) in case of need for persistent storage of designed columns and their value producers:
// create columnset
Column[] columns = new Column[] { col1, col2 };
ColumnSet colSet = new ColumnSet(columns);
// serialize (and save to file, if needed)
string jsonSerializedColumnSet = colSet.SerializeAsJson();
// restore JSON back to ColumnSet instance
ColumnSet deserializedFromJson = ColumnSet.DeserializeFromJson(jsonSerializedColumnSet);
DataSet <a name="dataset"></a>
TestDataSet is next abstraction layer which consumes instance of IColumnSet interface. Dataset exposes GenerateNewDataSet() method which allows to generate certain number of rows of values and store them inside dataset instance. Usage example:
// setup columns
Column col1 = new Column(new ColumnSettings() {
ColumnName = "col1",
Culture = CultureInfo.InvariantCulture,
TargetValueType = typeof(string),
ValueSupplier = new ValuePatternParser("[A-z]{5}")
});
Column col2 = new Column(new ColumnSettings()
{
ColumnName = "col2",
Culture = CultureInfo.InvariantCulture,
TargetValueType = typeof(int),
ValueSupplier = new ValuePatternParser("[0-9]{5}")
});
// create columnset
Column[] columns = new Column[] { col1, col2 };
ColumnSet colSet = new ColumnSet(columns);
// create dataset
TestDataSet dset = new TestDataSet("datasetName", colSet);
dset.GenerateNewDataSet(20); // generate 20 rows
// print dataset row by row
foreach (IRow row in dset.GetExistingDataSet())
Console.WriteLine(string.Join(", ", row));
Exporting dataset <a name="exporting-dataset"></a>
There are three possible deisgned ways to export data to some sort of persistent storage. Writer classes are available in TestDataGenerator.IO namespace.
Export to JSON
JSON writer is not configureable at the moment. All you need is to specify path to output file and dataset with data:
// create dataset
TestDataSet dset = new TestDataSet("datasetName", colSet);
// create json writer
JsonDataSetWriter jsonWriter = new JsonDataSetWriter();
// write dataset to file
jsonWriter.WriteToFileAsync("dataset.json", dset);
Export to CSV
CSV writer can be configured with CultureInfo instance. Also newline sequence can be specified using exposed NewLineSequence property. Usage:
// create dataset
TestDataSet dset = new TestDataSet("datasetName", colSet);
// create csv writer with provided culture
CsvDataSetWriter csvWriter = new CsvDataSetWriter(CultureInfo.InvariantCulture);
// export to csv
csvWriter.WriteToFileAsync("dataset.csv", dset);
Export to database
Dataset can be exported to MS SQL Server or PostgreSQL database using DbDataSetWriter class with predefined implementations of IDbExportExecutor interface. Thus, DbDataSetWriter consumes instance of IDbExportExecutor and ITestDataSet to write data to database:
// setup columns
Column col1 = new Column(new ColumnSettings()
{
ColumnName = "col1",
Culture = CultureInfo.InvariantCulture,
TargetValueType = typeof(string),
ValueSupplier = new ValuePatternParser("[A-z]{5}")
});
Column col2 = new Column(new ColumnSettings()
{
ColumnName = "col2",
Culture = CultureInfo.InvariantCulture,
TargetValueType = typeof(int),
ValueSupplier = new ValuePatternParser("[0-9]{5}")
});
// create columnset
Column[] columns = new Column[] { col1, col2 };
ColumnSet colSet = new ColumnSet(columns);
// create dataset
TestDataSet dset = new TestDataSet("datasetName", colSet);
dset.GenerateNewDataSet(20); // generate 20 rows
// create db writer instance
DbDataSetWriter writer = new DbDataSetWriter();
// create SQL Server export executor
SqlServerExportExecutor sqlServerExecutor = new SqlServerExportExecutor(
"Server=localhost;Database=TestDb;Integrated Security=true;", "TestTable"
);
// or PostgreSQL export executor
PostgresExportExecutor postgresExecutor = new PostgresExportExecutor(
"User ID=TstUser;Password=1234567890;Host=localhost;Port=5432;Database=TestDb", "test_table"
);
// export using either executor
writer.WriteToDatabase(sqlServerExecutor, dset);
writer.WriteToDatabase(postgresExecutor, dset);
Product | Versions Compatible and additional computed target framework versions. |
---|---|
.NET | net5.0 is compatible. net5.0-windows was computed. net6.0 was computed. net6.0-android was computed. net6.0-ios was computed. net6.0-maccatalyst was computed. net6.0-macos was computed. net6.0-tvos was computed. net6.0-windows was computed. net7.0 was computed. net7.0-android was computed. net7.0-ios was computed. net7.0-maccatalyst was computed. net7.0-macos was computed. net7.0-tvos was computed. net7.0-windows was computed. net8.0 was computed. net8.0-android was computed. net8.0-browser was computed. net8.0-ios was computed. net8.0-maccatalyst was computed. net8.0-macos was computed. net8.0-tvos was computed. net8.0-windows was computed. |
.NET Core | netcoreapp2.0 was computed. netcoreapp2.1 was computed. netcoreapp2.2 was computed. netcoreapp3.0 was computed. netcoreapp3.1 is compatible. |
.NET Standard | netstandard2.0 is compatible. netstandard2.1 was computed. |
.NET Framework | net461 was computed. net462 was computed. net463 was computed. net47 was computed. net471 was computed. net472 was computed. net48 was computed. net481 was computed. |
MonoAndroid | monoandroid was computed. |
MonoMac | monomac was computed. |
MonoTouch | monotouch was computed. |
Tizen | tizen40 was computed. tizen60 was computed. |
Xamarin.iOS | xamarinios was computed. |
Xamarin.Mac | xamarinmac was computed. |
Xamarin.TVOS | xamarintvos was computed. |
Xamarin.WatchOS | xamarinwatchos was computed. |
-
.NETCoreApp 3.1
- No dependencies.
-
.NETStandard 2.0
- No dependencies.
-
net5.0
- No dependencies.
NuGet packages (2)
Showing the top 2 NuGet packages that depend on TDG.Abstractions:
Package | Downloads |
---|---|
TDG.Core
Simple library which provides access to easy dataset generation for testing purposes.Datasets can be afterwards exported to JSON and CSV files as well as to database table. |
|
TDG.IO
Simple library which provides access to easy dataset generation for testing purposes.Datasets can be afterwards exported to JSON and CSV files as well as to database table. |
GitHub repositories
This package is not used by any popular GitHub repositories.