Pgvector.Dapper 0.1.1

Prefix Reserved
There is a newer version of this package available.
See the version list below for details.
dotnet add package Pgvector.Dapper --version 0.1.1                
NuGet\Install-Package Pgvector.Dapper -Version 0.1.1                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="Pgvector.Dapper" Version="0.1.1" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add Pgvector.Dapper --version 0.1.1                
#r "nuget: Pgvector.Dapper, 0.1.1"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install Pgvector.Dapper as a Cake Addin
#addin nuget:?package=Pgvector.Dapper&version=0.1.1

// Install Pgvector.Dapper as a Cake Tool
#tool nuget:?package=Pgvector.Dapper&version=0.1.1                

pgvector-dotnet

pgvector support for C#

Supports Npgsql, Dapper, and Entity Framework Core

Build Status

Getting Started

Follow the instructions for your database library:

Npgsql

Run:

dotnet add package Pgvector

Import the library

using Pgvector.Npgsql;

Create a connection

var dataSourceBuilder = new NpgsqlDataSourceBuilder(connString);
dataSourceBuilder.UseVector();
await using var dataSource = dataSourceBuilder.Build();

var conn = dataSource.OpenConnection();

Create a table

await using (var cmd = new NpgsqlCommand("CREATE TABLE items (embedding vector(3))", conn))
{
    await cmd.ExecuteNonQueryAsync();
}

Insert a vector

await using (var cmd = new NpgsqlCommand("INSERT INTO items (embedding) VALUES ($1)", conn))
{
    var embedding = new Vector(new float[] { 1, 1, 1 });
    cmd.Parameters.AddWithValue(embedding);
    await cmd.ExecuteNonQueryAsync();
}

Get the nearest neighbors

await using (var cmd = new NpgsqlCommand("SELECT * FROM items ORDER BY embedding <-> $1 LIMIT 5", conn))
{
    var embedding = new Vector(new float[] { 1, 1, 1 });
    cmd.Parameters.AddWithValue(embedding);

    await using (var reader = await cmd.ExecuteReaderAsync())
    {
        while (await reader.ReadAsync())
        {
            Console.WriteLine((Vector)reader.GetValue(0));
        }
    }
}

Add an approximate index

await using (var cmd = new NpgsqlCommand("CREATE INDEX ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 100)", conn))
{
    await cmd.ExecuteNonQueryAsync();
}

Use vector_ip_ops for inner product and vector_cosine_ops for cosine distance

See a full example

Dapper

Run:

dotnet add package Pgvector.Dapper

Import the library

using Pgvector.Dapper;
using Pgvector.Npgsql;

Create a connection

SqlMapper.AddTypeHandler(new VectorTypeHandler());

var dataSourceBuilder = new NpgsqlDataSourceBuilder(connString);
dataSourceBuilder.UseVector();
await using var dataSource = dataSourceBuilder.Build();

var conn = dataSource.OpenConnection();

Define a class

public class Item
{
    public Vector? Embedding { get; set; }
}

Create a table

conn.Execute("CREATE TABLE items (embedding vector(3))");

Insert a vector

var embedding = new Vector(new float[] { 1, 1, 1 });
conn.Execute(@"INSERT INTO items (embedding) VALUES (@embedding)", new { embedding });

Get the nearest neighbors

var embedding = new Vector(new float[] { 1, 1, 1 });
var items = conn.Query<Item>("SELECT * FROM items ORDER BY embedding <-> @embedding LIMIT 5", new { embedding });
foreach (Item item in items)
{
    Console.WriteLine(item.Embedding);
}

Add an approximate index

conn.Execute("CREATE INDEX ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 100)");

Use vector_ip_ops for inner product and vector_cosine_ops for cosine distance

See a full example

Entity Framework Core

Run:

dotnet add package Pgvector.EntityFrameworkCore

Import the library

using Pgvector.EntityFrameworkCore;

Configure the connection

protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
{
    optionsBuilder.UseNpgsql("connString", o => o.UseVector());
}

Define a model

public class Item
{
    [Column(TypeName = "vector(3)")]
    public Vector? Embedding { get; set; }
}

Insert a vector

ctx.Items.Add(new Item { Embedding = new Vector(new float[] { 1, 1, 1 }) });
ctx.SaveChanges();

Get the nearest neighbors

var embedding = new Vector(new float[] { 1, 1, 1 });
var items = await ctx.Items.FromSql($"SELECT * FROM items ORDER BY embedding <-> {embedding} LIMIT 5").ToListAsync();
foreach (Item item in items)
{
    if (item.Embedding != null)
    {
        Console.WriteLine(new Vector(item.Embedding));
    }
}

Add an approximate index

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
    modelBuilder.Entity<Item>()
        .HasIndex(i => i.Embedding)
        .HasMethod("ivfflat")
        .HasOperators("vector_l2_ops");
}

Use vector_ip_ops for inner product and vector_cosine_ops for cosine distance

See a full example

History

Contributing

Everyone is encouraged to help improve this project. Here are a few ways you can help:

To get started with development:

git clone https://github.com/pgvector/pgvector-dotnet.git
cd pgvector-dotnet
createdb pgvector_dotnet_test
dotnet test
Product Compatible and additional computed target framework versions.
.NET net5.0 was computed.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed. 
.NET Core netcoreapp2.0 was computed.  netcoreapp2.1 was computed.  netcoreapp2.2 was computed.  netcoreapp3.0 was computed.  netcoreapp3.1 was computed. 
.NET Standard netstandard2.0 is compatible.  netstandard2.1 was computed. 
.NET Framework net461 was computed.  net462 was computed.  net463 was computed.  net47 was computed.  net471 was computed.  net472 was computed.  net48 was computed.  net481 was computed. 
MonoAndroid monoandroid was computed. 
MonoMac monomac was computed. 
MonoTouch monotouch was computed. 
Tizen tizen40 was computed.  tizen60 was computed. 
Xamarin.iOS xamarinios was computed. 
Xamarin.Mac xamarinmac was computed. 
Xamarin.TVOS xamarintvos was computed. 
Xamarin.WatchOS xamarinwatchos was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
0.3.0 2,378 6/26/2024
0.2.0 12,322 4/17/2024
0.1.1 6,735 4/25/2023
0.1.0 383 3/28/2023