DaxSharp 1.0.2
dotnet add package DaxSharp --version 1.0.2
NuGet\Install-Package DaxSharp -Version 1.0.2
<PackageReference Include="DaxSharp" Version="1.0.2" />
<PackageVersion Include="DaxSharp" Version="1.0.2" />
<PackageReference Include="DaxSharp" />
paket add DaxSharp --version 1.0.2
#r "nuget: DaxSharp, 1.0.2"
#:package DaxSharp@1.0.2
#addin nuget:?package=DaxSharp&version=1.0.2
#tool nuget:?package=DaxSharp&version=1.0.2
DaxSharp
DaxSharp is a .NET utility library that brings DAX-style summarization capabilities to LINQ collections. It offers flexible grouping, filtering, and aggregation of in-memory data structures in a concise, expressive way.
๐ฆ Installation
Install via NuGet:
dotnet add package DaxSharp
๐ Features
- Perform DAX-like SUMMARIZECOLUMNS on in-memory collections.
- Filter data before aggregation.
- Compute multiple aggregation expressions.
- Handle sparse or missing group combinations with Cartesian expansion.
- Optional ordering of results through the
orderBy
parameter.
๐งช Usage
SummarizeColumns
Groups and filters items, then computes specified aggregations.
using DaxSharp;
var data = new[]
{
(Product: "Product1", Category: "Category1", IsActive: true, Amount: 10, Quantity: 2),
(Product: "Product1", Category: "Category2", IsActive: true, Amount: 20, Quantity: 3),
(Product: "Product2", Category: "Category1", IsActive: true, Amount: 5, Quantity: 1),
(Product: "Product3", Category: "Category3", IsActive: true, Amount: 15, Quantity: 2)
}.ToList();
var results = data.SummarizeColumns(
item => new { item.Product, item.Category },
(_, _) => true,
(items, g) =>
items.Where(x => x.Category != "Category1" && x.IsActive).ToArray() is { Length: > 0 } array
? array.Sum(x => x.Amount)
: 2
).ToList();
The results are:
- Product1, Category2, 2
- Product1, Category2, 20
- Product2, Category1, 2
- Product3, Category3, 15
DAX:
EVALUATE
SUMMARIZECOLUMNS(
Sales[Product],
Sales[Category],
FILTER(
Categories,
Categories[IsActive] = TRUE && Categories[Category] <> "Category1"
),
"Sum", IF(
ISBLANK(SUM(Sales[Amount])),
2,
SUM(Sales[Amount])
)
)
When the orderBy
parameter is provided, the method processes groups in the specified order and includes cartesian combinations - meaning it will generate results for all combinations specified in the orderBy
collection when aggregations on missing data aren't all null or zero.
using DaxSharp;
var data = new[]
{
(Product: "Product1", Category: "Category1", IsActive: true, Amount: 10, Quantity: 2),
(Product: "Product1", Category: "Category2", IsActive: true, Amount: 20, Quantity: 3),
(Product: "Product2", Category: "Category1", IsActive: true, Amount: 5, Quantity: 1),
(Product: "Product3", Category: "Category3", IsActive: true, Amount: 15, Quantity: 2)
}.ToList();
var results = data.SummarizeColumns(
item => new { item.Product, item.Category },
(item, group) => item is { IsActive: true, Category: not "Category1" } || group is { Category: not "Category1" },
(items, group) =>
items.ToArray() is { Length: > 0 } array
? array.Sum(x => x.Amount)
: 2,
from pId in Enumerable.Range(1, 3).OrderByDescending(x => x)
from cId in Enumerable.Range(1, 3)
select new { Product = $"Product{pId}", Category = $"Category{cId}" }
);
The results are:
- Product3, Category2, 2
- Product3, Category3, 15
- Product2, Category2, 2
- Product2, Category3, 2
- Product1, Category2, 20
- Product1, Category3, 2
DAX:
EVALUATE
SUMMARIZECOLUMNS(
Products[Product],
Categories[Category],
FILTER(
Categories,
Categories[IsActive] = TRUE && Categories[Category] <> "Category1"
),
"Sum", IF(
ISBLANK(SUM(Sales[Amount])),
2,
SUM(Sales[Amount])
)
)
ORDER BY Products[Product] DESC
๐ ๏ธ API Reference
SummarizeColumns<T, TGrouped, TExpressions>
public static IEnumerable<(TGrouped grouped, TExpressions expressions)> SummarizeColumns<T, TGrouped, TExpressions>(
this IEnumerable<T> items,
Func<T, TGrouped> groupBy,
Func<T?, TGrouped?, bool> filter,
Func<IEnumerable<T>, TGrouped?, TExpressions?> expressions,
IEnumerable<TGrouped>? orderBy = null,
int maxCount = int.MaxValue)
where TGrouped : notnull
โก Performance
DaxSharp is optimized for high-performance data processing with parallel execution. The library leverages multi-threading and efficient memory management to handle large datasets efficiently.
Performance Test Examples
100 Million Rows Test Handles 100 million fact table rows in ~0.7 seconds
using DaxSharp;
using System.Diagnostics;
var stopwatch = new Stopwatch();
stopwatch.Start();
// Create 100 million fact table rows
var sales = Enumerable.Range(0, 100000000)
.Select(i => (productId: i % 1000000, customerId: i % 1000000, amount: i % 100))
.ToArray();
stopwatch.Stop();
Console.WriteLine($"Data creation: {stopwatch.Elapsed}");
stopwatch.Restart();
// Process with SummarizeColumns - equivalent to DAX TOPN(1000, SUMMARIZECOLUMNS(...))
var result = sales.SummarizeColumns(
x => new { x.productId, x.customerId },
(_, _) => true,
(x, g) => x.ToArray() is { Length: > 0 } array
? array.Sum(y => y.amount)
: 1,
from pId in Enumerable.Range(0, 1000000)
from cId in Enumerable.Range(0, 1000000)
select new { productId = pId, customerId = cId },
1000
).ToList();
stopwatch.Stop();
Console.WriteLine($"Processing: {stopwatch.Elapsed}");
1 Billion Rows Test Handles 1 billion fact table rows in ~4.4 seconds.
using DaxSharp;
using System.Diagnostics;
var stopwatch = new Stopwatch();
stopwatch.Start();
// Create 1 billion fact table rows
var sales = Enumerable.Range(0, 1000000000)
.Select(i => (productId: i % 1000000, customerId: i % 1000000, amount: i % 100))
.ToArray();
stopwatch.Stop();
Console.WriteLine($"Data creation: {stopwatch.Elapsed}");
stopwatch.Restart();
// Process with SummarizeColumns
var result = sales.SummarizeColumns(
x => new { x.productId, x.customerId },
(_, _) => true,
(x, g) => x.ToArray() is { Length: > 0 } array
? array.Sum(y => y.amount)
: 1,
from pId in Enumerable.Range(0, 1000000)
from cId in Enumerable.Range(0, 1000000)
select new { productId = pId, customerId = cId },
1000
).ToList();
stopwatch.Stop();
Console.WriteLine($"Processing: {stopwatch.Elapsed}");
DAX:
EVALUATE
TOPN(
1000,
SUMMARIZECOLUMNS(
Products[ProductId],
Categories[CategoryId],
"Sum", IF(
ISBLANK(SUM(Sales[Amount])),
1,
SUM(Sales[Amount])
)
)
)
โ๏ธ Internals
Cartesian expansion in SummarizeColumns
fills in missing group key combinations with expression results.
Skips results with all null expressions unless expansion is required.
When orderBy
is specified, the method ensures all combinations in the orderBy
collection are included in the results.
๐ License
MIT
Product | Versions Compatible and additional computed target framework versions. |
---|---|
.NET | net9.0 is compatible. net9.0-android was computed. net9.0-browser was computed. net9.0-ios was computed. net9.0-maccatalyst was computed. net9.0-macos was computed. net9.0-tvos was computed. net9.0-windows was computed. net10.0 was computed. net10.0-android was computed. net10.0-browser was computed. net10.0-ios was computed. net10.0-maccatalyst was computed. net10.0-macos was computed. net10.0-tvos was computed. net10.0-windows was computed. |
-
net9.0
- No dependencies.
NuGet packages
This package is not used by any NuGet packages.
GitHub repositories
This package is not used by any popular GitHub repositories.
Version | Downloads | Last Updated |
---|---|---|
1.0.2 | 14 | 8/17/2025 |