cs-tree-genetic-programming 1.0.5

dotnet add package cs-tree-genetic-programming --version 1.0.5                
NuGet\Install-Package cs-tree-genetic-programming -Version 1.0.5                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="cs-tree-genetic-programming" Version="1.0.5" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add cs-tree-genetic-programming --version 1.0.5                
#r "nuget: cs-tree-genetic-programming, 1.0.5"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install cs-tree-genetic-programming as a Cake Addin
#addin nuget:?package=cs-tree-genetic-programming&version=1.0.5

// Install cs-tree-genetic-programming as a Cake Tool
#tool nuget:?package=cs-tree-genetic-programming&version=1.0.5                

cs-tree-genetic-programming

Tree-based genetic programming implemented using C#

Usage

Below shows the sample codes in which the symbolic regression is solved using TreeGP. The symbolic regression is trying to find a GP solution that approximate the function y = x^2 + x + 1.

class Program
{
	static double FunctionXY(double x)
	{
		return x * x + x + 1;
	}

	static DataTable LoadData()
	{
		DataTable table = new DataTable();
		table.Columns.Add("X");
		table.Columns.Add("Y");

		double lower_bound = -1.0;
		double upper_bound = 1.0;

		double interval = 0.1;

		for (double x = lower_bound; x <= upper_bound; x+=interval)
		{
			table.Rows.Add(x, FunctionXY(x));
		}


		return table;
	}
	static void Main(string[] args)
	{
		DataTable table = LoadData();

		TGPConfig config = new TGPConfig("TGPConfig.xml");

		// The problem is to minimize the sum of errors between predicted and actual function
		config.IsMaximization = false;

		// As specified in Chapter 4 of "A Field Guide to Genetic Programming"
		config.PopulationSize = 4;
		config.ElitismRatio = 0; //non elitist
		config.CrossoverRate = 0.5; // subtree crossover rate set to 0.5
		config.MacroMutationRate = 0.25; // subtree mutation rate set to 0.25; 
		config.MicroMutationRate = 0.0; // point mutation rate set to 0.0
		config.ReproductionRate = 0.25; // reproduction rate set to 0.25
		config.NormalizeEvolutionRates();
		//Question 1: Is the performance normal for the GP?

		config.MaximumDepthForCreation = 2;
		config.MaximumDepthForCrossover = 2; // no tree size limit by setting a very large max depth
		config.MaximumDepthForMutation = 2; 

		TGPPop<TGPSolution> pop = new TGPPop<TGPSolution>(config);
		pop.ReproductionSelectionInstruction = new SelectionInstruction_RouletteWheel<TGPSolution>(); //use roulette wheel selection 

		// Function Set = {+, -, %, *} where % is protected division that returns 1 if the denominator is 0
		pop.OperatorSet.AddOperator(new TGPOperator_Plus());
		pop.OperatorSet.AddOperator(new TGPOperator_Minus());
		pop.OperatorSet.AddOperator(new TGPOperator_Division());
		pop.OperatorSet.AddOperator(new TGPOperator_Multiplication());

		// Terminal Set = {R, x}
		pop.ConstantSet.AddConstant("R", DistributionModel.GetUniform()* 10.0 - 5.0);
		pop.VariableSet.AddVariable("x");

		pop.CreateFitnessCase += (index) =>
		{
			SymRegFitnessCase fitness_case = new SymRegFitnessCase();
			fitness_case.X = double.Parse(table.Rows[index]["X"].ToString());
			fitness_case.Y = double.Parse(table.Rows[index]["Y"].ToString());

			return fitness_case;
		};

		pop.GetFitnessCaseCount += () =>
		{
			return table.Rows.Count;
		};

		pop.EvaluateObjectiveForSolution += (fitness_cases, solution, objective_index) =>
		{
			double sum_of_error = 0;
			for (int i = 0; i < fitness_cases.Count; i++)
			{
				SymRegFitnessCase fitness_case = (SymRegFitnessCase)fitness_cases[i];
				double correct_y = fitness_case.Y;
				double computed_y = fitness_case.ComputedY;
				sum_of_error += System.Math.Abs(correct_y - computed_y);
			}

			return sum_of_error;
		};


		pop.BreedInitialPopulation();

		double error = pop.GlobalBestProgram.ObjectiveValue;
		while (error > 0.1)
		{
			pop.Evolve();
			error = pop.GlobalBestProgram.ObjectiveValue;

			Console.WriteLine("Symbolic Regression Generation: {0}", pop.CurrentGeneration);
			Console.WriteLine("Minimum Error: {0}", error.ToString("0.000"));
			Console.WriteLine("Global Best Solution:\n{0}", pop.GlobalBestProgram);
			
		}

		Console.WriteLine(pop.GlobalBestProgram.ToString());

	}
} 

The TGPConfig.xml and its child configuration files will be automatically generated if they do not exist, otherwise the configuration will be loaded from the existing TGPConfig.xml and its child configuration files.

Product Compatible and additional computed target framework versions.
.NET Framework net452 is compatible.  net46 was computed.  net461 was computed.  net462 was computed.  net463 was computed.  net47 was computed.  net471 was computed.  net472 was computed.  net48 was computed.  net481 was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

This package has no dependencies.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
1.0.5 1,178 11/1/2017
1.0.4 973 11/1/2017
1.0.3 982 11/1/2017
1.0.2 987 11/1/2017
1.0.1 984 10/31/2017

Tree Genetic Programming implemented in .NET 4.5.2