cs-recommender
1.0.1
dotnet add package cs-recommender --version 1.0.1
NuGet\Install-Package cs-recommender -Version 1.0.1
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="cs-recommender" Version="1.0.1" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add cs-recommender --version 1.0.1
The NuGet Team does not provide support for this client. Please contact its maintainers for support.
#r "nuget: cs-recommender, 1.0.1"
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install cs-recommender as a Cake Addin #addin nuget:?package=cs-recommender&version=1.0.1 // Install cs-recommender as a Cake Tool #tool nuget:?package=cs-recommender&version=1.0.1
The NuGet Team does not provide support for this client. Please contact its maintainers for support.
cs-recommender
Recommender based on Hidden Factor Analysis Collaborative Filtering in .NET 4.6.1
Install
Run the following command to get the nuget package:
Install-Package cs-recommender
Usage
The sample code show show how to train and use the Collaborative Filtering Recommender:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using MathNet.Numerics.LinearAlgebra.Generic;
using MathNet.Numerics.LinearAlgebra.Double;
using System.IO;
using ContinuousOptimization.LocalSearch;
using ContinuousOptimization;
using Recommender.Utils;
namespace Recommender
{
public class Program
{
protected static List<string> LoadMovies()
{
List<string> movie_titles = new List<string>();
string line;
using (StreamReader reader = new StreamReader("movie_ids.txt"))
{
while ((line = reader.ReadLine()) != null)
{
string[] texts = line.Split(new char[] { ' ' });
StringBuilder sb = new StringBuilder();
bool first_index = true;
foreach (string text in texts)
{
if (string.IsNullOrEmpty(text)) continue;
if (first_index)
{
first_index = false;
continue;
}
sb.AppendFormat("{0} ", text);
}
string title = sb.ToString().Trim();
movie_titles.Add(title);
}
}
return movie_titles;
}
public static void Main(string[] args)
{
List<string> movie_titles = LoadMovies();
int num_movies = movie_titles.Count;
// Step 1: create my ratings with missing entries
double[] my_ratings = new double[num_movies];
int[] my_ratings_r = new int[num_movies];
for (int i = 0; i < num_movies; ++i)
{
my_ratings[i] = 0;
}
my_ratings[1] = 4;
my_ratings[98] = 2;
my_ratings[7] = 3;
my_ratings[12] = 5;
my_ratings[54] = 4;
my_ratings[64] = 5;
my_ratings[66] = 3;
my_ratings[69] = 5;
my_ratings[183] = 4;
my_ratings[226] = 5;
my_ratings[355] = 5;
for (int i = 0; i < num_movies; ++i)
{
my_ratings_r[i] = my_ratings[i] > 0 ? 1 : 0;
}
// Step 2: load the current ratings of all users, i.e., Y and R
List<List<double>> Y = DblDataTableUtil.LoadDataSet("Y.txt");
List<List<int>> R = IntDataTableUtil.LoadDataSet("R.txt");
int num_users;
DblDataTableUtil.GetSize(Y, out num_movies, out num_users);
// Step 3: insert my ratings into the existing Y and R (as the first column)
num_users++;
List<RatedItem> records = new List<RatedItem>();
for (int i = 0; i < num_movies; ++i)
{
double[] rec_Y = new double[num_users];
bool[] rec_R = new bool[num_users];
for (int j = 0; j < num_users; ++j)
{
if (j == 0)
{
rec_Y[j] = my_ratings[i];
rec_R[j] = my_ratings_r[i] == 1;
}
else
{
rec_Y[j] = Y[i][j - 1];
rec_R[j] = R[i][j - 1] == 1;
}
}
RatedItem rec = new RatedItem(null, rec_Y, rec_R);
records.Add(rec);
}
int num_features = 10;
double lambda = 10;
CollaborativeFilteringRS<RatedItem> algorithm = new CollaborativeFilteringRS<RatedItem>();
algorithm.Stepped += (s, step) =>
{
Console.WriteLine("#{0}: {1}", step, s.Cost);
};
algorithm.RegularizationLambda = lambda;
algorithm.MaxLocalSearchIteration = 100;
GradientDescent local_search = algorithm.LocalSearch as GradientDescent;
local_search.Alpha = 0.005;
double[] Ymean;
algorithm.DoMeanNormalization(records, out Ymean);
algorithm.Compute(records, num_features);
algorithm.UndoMeanNormalization(records, Ymean);
int userId = 0;
int topK = 10;
List<RatedItem> highest_ranks = algorithm.SelectHigestRanked(userId, records, topK);
for (int i = 0; i < highest_ranks.Count; ++i)
{
RatedItem rec = highest_ranks[i];
Console.WriteLine("#{0}: ({1}) {2}", i + 1, rec.UserRanks[0], movie_titles[rec.ItemIndex]);
}
}
}
}
Product | Versions Compatible and additional computed target framework versions. |
---|---|
.NET Framework | net461 is compatible. net462 was computed. net463 was computed. net47 was computed. net471 was computed. net472 was computed. net48 was computed. net481 was computed. |
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.
This package has no dependencies.
NuGet packages
This package is not used by any NuGet packages.
GitHub repositories
This package is not used by any popular GitHub repositories.
Version | Downloads | Last updated |
---|---|---|
1.0.1 | 1,262 | 5/1/2018 |
Collaborative Filtering Recommender in .NET 4.6.1