Xam.Plugins.OnDeviceCustomVision 1.0.0

There is a newer version of this package available.
See the version list below for details.

Requires NuGet 2.8.1 or higher.

dotnet add package Xam.Plugins.OnDeviceCustomVision --version 1.0.0                
NuGet\Install-Package Xam.Plugins.OnDeviceCustomVision -Version 1.0.0                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="Xam.Plugins.OnDeviceCustomVision" Version="1.0.0" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add Xam.Plugins.OnDeviceCustomVision --version 1.0.0                
#r "nuget: Xam.Plugins.OnDeviceCustomVision, 1.0.0"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install Xam.Plugins.OnDeviceCustomVision as a Cake Addin
#addin nuget:?package=Xam.Plugins.OnDeviceCustomVision&version=1.0.0

// Install Xam.Plugins.OnDeviceCustomVision as a Cake Tool
#tool nuget:?package=Xam.Plugins.OnDeviceCustomVision&version=1.0.0                

Xam.Plugins.OnDeviceCustomVision

The Azure Custom Vision service is able to create models that can be exported as CoreML or Tensorflow models to do image classification.

This plugin makes it easy to download and use these models offline from inside your mobile app, using CoreML on iOS or Tensorflow on Android. These models can then be called from a .NET standard library, using something like Xam.Plugins.Media to take photos for classification.

Setup
Platform Support
Platform Version
Xamarin.iOS iOS 11+
Xamarin.Android API 21+
Usage

Before you can use this API, you need to initialise it with the model file downloaded from CustomVision. Trying to classify an image without calling Init will result in a ImageClassifierException being thrown.

iOS

Download the Core ML model from Custom Vision.

Pre-compiled models

Models can be compiled before beiong used, or compiled on the device. To use a pre-compiled model, compile the downloaded model using:

xcrun coremlcompiler compile <model_file_name>.mlmodel <model_name>.mlmodelc

This will spit out a folder called <model_name>.mlmodelc containing a number of files. Add this entire folder to the Resources folder in your iOS app. Once this has been added, add a call to Init to your app delegate, passing in the name of your compiled model without the extension (i.e. the name of the model folder without mlmodelc) and the type of model downloaded from the custom vision service:

public override bool FinishedLaunching(UIApplication uiApplication, NSDictionary launchOptions)
{
   ...
   CrossImageClassifier.Current.Init("<model_name>", ModelType.General);
   return base.FinishedLaunching(uiApplication, launchOptions);
}
Uncompiled models

Add the downloaded model, called <model_name>.mlmodel, to the Resources folder in your iOS app.Once this has been added, add a call to Init to your app delegate, passing in the name of your model without the extension (i.e. the name of the model folder without mlmodel) and the type of model downloaded from the custom vision service:

public override bool FinishedLaunching(UIApplication uiApplication, NSDictionary launchOptions)
{
   ...
   CrossImageClassifier.Current.Init("<model_name>", ModelType.General);
   return base.FinishedLaunching(uiApplication, launchOptions);
}

The call to Init will attempt to compile the model, throwning a ImageClassifierException if the compile fails.

Android

Download the tensorflow model from Custom Vision. This will be a folder containing two files.

  • labels.txt
  • model.pb

Add both these files to the Assets folder in your Android app. Once these are added, add a call to Init to your main activity passing in the name of the model file and the type of model downloaded from the custom vision service:

protected override void OnCreate(Bundle savedInstanceState)
{
   ...
   CrossImageClassifier.Current.Init("model.pb", ModelType.General);
}

Note - the labels file must be present and called labels.txt.

Calling this from your .NET Standard library

To classify an image, call:

var tags = await CrossImageClassifier.Current.ClassifyImage(stream);

Passing in an image as a stream. You can use a library like Xam.Plugins.Media to get an image as a stream from the camera or image library.

This will return a list of ImageClassification instances, one per tag in the model with the probabilty that the image matches that tag. Probabilities are doubles in the range of 0 - 1, with 1 being 100% probability that the image matches the tag. To find the most likely classification use:

tags.OrderByDescending(t => t.Probability)
    .First().Tag;
Using with an IoC container

CrossImageClassifier.Current returns an instance of the IImageClassifier interface, and this can be stored inside your IoC container and injected where required.

Product Compatible and additional computed target framework versions.
.NET net5.0 was computed.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed. 
.NET Core netcoreapp1.0 was computed.  netcoreapp1.1 was computed.  netcoreapp2.0 was computed.  netcoreapp2.1 was computed.  netcoreapp2.2 was computed.  netcoreapp3.0 was computed.  netcoreapp3.1 was computed. 
.NET Standard netstandard1.0 is compatible.  netstandard1.1 was computed.  netstandard1.2 was computed.  netstandard1.3 was computed.  netstandard1.4 was computed.  netstandard1.5 was computed.  netstandard1.6 was computed.  netstandard2.0 was computed.  netstandard2.1 was computed. 
.NET Framework net45 was computed.  net451 was computed.  net452 was computed.  net46 was computed.  net461 was computed.  net462 was computed.  net463 was computed.  net47 was computed.  net471 was computed.  net472 was computed.  net48 was computed.  net481 was computed. 
MonoAndroid monoandroid was computed.  monoandroid10 is compatible. 
MonoMac monomac was computed. 
MonoTouch monotouch was computed. 
Tizen tizen30 was computed.  tizen40 was computed.  tizen60 was computed. 
Universal Windows Platform uap was computed.  uap10.0 was computed. 
Windows Phone wp8 was computed.  wp81 was computed.  wpa81 was computed. 
Windows Store netcore was computed.  netcore45 was computed.  netcore451 was computed. 
Xamarin.iOS xamarinios was computed.  xamarinios10 is compatible. 
Xamarin.Mac xamarinmac was computed. 
Xamarin.TVOS xamarintvos was computed. 
Xamarin.WatchOS xamarinwatchos was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

This package has no dependencies.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
2.2.2 3,967 10/28/2019
2.2.1 1,286 10/16/2019
2.1.1 1,709 6/10/2019
2.1.0-alpha 1,136 6/6/2019
2.0.0 2,117 7/18/2018
1.0.0 9,352 2/26/2018
0.1.5-alpha 2,348 1/24/2018
0.1.1-alpha 2,300 1/9/2018
0.1.0-alpha 2,551 1/9/2018