Tensor 0.4.11

.NET Standard 2.0
dotnet add package Tensor --version 0.4.11
NuGet\Install-Package Tensor -Version 0.4.11
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="Tensor" Version="0.4.11" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add Tensor --version 0.4.11
#r "nuget: Tensor, 0.4.11"
#r directive can be used in F# Interactive, C# scripting and .NET Interactive. Copy this into the interactive tool or source code of the script to reference the package.
// Install Tensor as a Cake Addin
#addin nuget:?package=Tensor&version=0.4.11

// Install Tensor as a Cake Tool
#tool nuget:?package=Tensor&version=0.4.11

Tensor (n-dimensional array) library for F#

     Core features:
       - n-dimensional arrays (tensors) in host memory or on CUDA GPUs
       - element-wise operations (addition, multiplication, absolute value, etc.)
       - basic linear algebra operations (dot product, SVD decomposition, matrix inverse, etc.)
       - reduction operations (sum, product, average, maximum, arg max, etc.)
       - logic operations (comparision, and, or, etc.)
       - views, slicing, reshaping, broadcasting (similar to NumPy)
       - scatter and gather by indices
       - standard functional operations (map, fold, etc.)

     Data exchange:
       - read/write support for HDF5 (.h5)
       - interop with standard F# types (Seq, List, Array, Array2D, Array3D, etc.)

     Performance:
       - host: SIMD and BLAS accelerated operations
         - by default Intel MKL is used (shipped with NuGet package)
         - other BLASes (OpenBLAS, vendor-specific) can be selected by configuration option
       - CUDA GPU: all operations performed locally on GPU and cuBLAS used for matrix operations

     Requirements:
       - Linux, MacOS or Windows on x64
       - Linux requires libgomp.so.1 installed.

     Additional algorithms are provided in the Tensor.Algorithm package.

Product Versions
.NET net5.0 net5.0-windows net6.0 net6.0-android net6.0-ios net6.0-maccatalyst net6.0-macos net6.0-tvos net6.0-windows net7.0 net7.0-android net7.0-ios net7.0-maccatalyst net7.0-macos net7.0-tvos net7.0-windows
.NET Core netcoreapp2.0 netcoreapp2.1 netcoreapp2.2 netcoreapp3.0 netcoreapp3.1
.NET Standard netstandard2.0 netstandard2.1
.NET Framework net461 net462 net463 net47 net471 net472 net48 net481
MonoAndroid monoandroid
MonoMac monomac
MonoTouch monotouch
Tizen tizen40 tizen60
Xamarin.iOS xamarinios
Xamarin.Mac xamarinmac
Xamarin.TVOS xamarintvos
Xamarin.WatchOS xamarinwatchos
Compatible target framework(s)
Additional computed target framework(s)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (3)

Showing the top 3 NuGet packages that depend on Tensor:

Package Downloads
DeepNet

Deep learning library for F#. Provides symbolic model differentiation, automatic differentiation and compilation to CUDA GPUs. Includes optimizers and model blocks used in deep learning. Make sure to set the platform of your project to x64.

RPlotTools

Tools for plotting using R from F#.

Tensor.Algorithm

Data types: - arbitrary precision rational numbers Matrix algebra (integer, rational): - Row echelon form - Smith normal form - Kernel, cokernel and (pseudo-)inverse Matrix decomposition (floating point): - Principal component analysis (PCA) - ZCA whitening Misc: - Bezout's identity - Loading of NumPy's .npy and .npz files.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
0.4.11 5,346 5/8/2018
0.4.11-v0.4.11-215 555 5/8/2018
0.4.11-symtensor-core-242 653 11/15/2018
0.4.11-symtensor-core-241 607 11/15/2018
0.4.11-symtensor-core-240 613 11/15/2018
0.4.11-symtensor-core-239 604 11/15/2018
0.4.11-symtensor-core-238 607 11/15/2018
0.4.11-symtensor-core-237 639 11/15/2018
0.4.11-symtensor-core-236 583 11/14/2018
0.4.11-symtensor-core-235 600 11/14/2018
0.4.11-symtensor-core-234 602 11/14/2018
0.4.11-symtensor-core-231 613 11/9/2018
0.4.11-symtensor-core-230 628 11/9/2018
0.4.11-symtensor-core-229 584 11/8/2018
0.4.11-symtensor-core-228 593 11/8/2018
0.4.11-symtensor-core-227 641 10/30/2018
0.4.11-symtensor-core-226 648 10/30/2018
0.4.11-symtensor-core-225 578 10/30/2018
0.4.11-develop-216 803 5/8/2018
0.4.10-develop-213 807 5/8/2018
0.4.10-develop-212 798 5/7/2018
0.4.10-develop-211 818 5/7/2018
0.3.0.712-master 668 9/1/2017
0.3.0.711-master 670 9/1/2017
0.3.0.710-master 649 9/1/2017
0.3.0.709-master 636 8/31/2017
0.3.0.708-master 657 8/30/2017
0.3.0.707-master 676 8/30/2017
0.3.0.706-master 654 8/30/2017
0.3.0.701-master 692 6/26/2017
0.3.0.700-master 706 6/22/2017
0.3.0.699-master 685 6/22/2017
0.3.0.698-master 682 6/21/2017
0.3.0.697-master 681 6/21/2017
0.3.0.696-master 717 6/21/2017
0.3.0.695-master 685 6/21/2017
0.3.0.694-master 677 6/21/2017
0.3.0.693-master 689 6/20/2017
0.3.0.692-master 671 6/19/2017
0.3.0.691-master 709 6/19/2017
0.3.0.690-master 694 6/19/2017
0.3.0.689-master 689 5/14/2017
0.3.0.688 6,522 5/14/2017
0.3.0.686-master 691 5/14/2017
0.2.0.591-master 687 4/19/2017
0.2.0.565-master 705 4/11/2017
0.2.0.556-master 684 3/21/2017
0.2.0.551-master 740 3/17/2017
0.2.0.540-master 679 3/15/2017
0.2.0.536-master 673 3/14/2017
0.2.0.519-master 698 3/2/2017
0.2.0.516-master 676 3/2/2017
0.2.0.499-master 704 2/13/2017
0.2.0.494-master 679 2/7/2017
0.2.0.479-master 698 2/1/2017
0.2.0.463-master 692 1/17/2017
0.2.0.431-master 774 12/2/2016
0.2.0.422-master 1,070 11/9/2016
0.2.0.421-master 1,004 11/9/2016
0.2.0.411-master 747 10/26/2016
0.2.0.400-master 701 10/26/2016
0.2.0.394-master 719 10/25/2016
0.2.0.382-master 711 10/21/2016
0.2.0.377-master 700 10/20/2016
0.2.0.323-master 687 10/11/2016
0.2.0.262-master 721 9/29/2016
0.2.0.248-master 717 9/27/2016
0.2.0.174-master 725 9/16/2016
0.2.0.128-master 724 9/8/2016
0.2.0.122-master 728 9/8/2016
0.2.0.121-master 703 9/7/2016
0.2.0.111-master 696 9/7/2016
0.2.0.105-ci 758 9/5/2016
0.2.0.97-ci 752 8/30/2016
0.2.0.96-ci 730 8/29/2016
0.2.0.90-ci 716 8/25/2016
0.2.0.89-ci 702 8/24/2016
0.2.0.88-ci 713 8/24/2016
0.2.0.87-ci 721 8/24/2016
0.2.0.86-ci 712 8/23/2016
0.2.0.85-ci 719 8/22/2016
0.2.0.84-ci 735 8/22/2016
0.2.0.83-ci 736 8/22/2016
0.2.0.82 1,797 8/22/2016
0.2.0.81-ci 743 8/19/2016
0.2.0.80-ci 743 6/27/2016
0.2.0.79-ci 735 6/27/2016
0.2.0.77-ci 735 6/22/2016
0.2.0.76-ci 744 6/22/2016
0.2.0.75 1,290 6/15/2016
0.2.0.74-ci 1,086 6/15/2016
0.2.0.73 1,511 6/15/2016
0.2.0.72 1,520 6/15/2016
0.2.0.71 1,475 6/14/2016
0.2.0.70 1,373 6/9/2016
0.2.0.69 1,338 6/9/2016
0.2.0.68 1,153 6/9/2016
0.2.0.67 1,647 6/8/2016
0.2.0.66-ci 735 6/8/2016
0.2.0.65-ci 738 6/8/2016
0.2.0.64-ci 785 6/8/2016
0.2.0.63-ci 715 6/7/2016
0.2.0.62 1,174 6/7/2016
0.2.0.61 1,143 6/6/2016
0.2.0.60 1,133 6/6/2016
0.2.0.59 1,126 6/6/2016
0.2.0.57 1,163 6/3/2016
0.2.0.56 1,129 6/3/2016
0.2.0.55 1,216 6/3/2016
0.2.0.54 1,167 6/3/2016
0.2.0.53 1,503 6/3/2016
0.2.0.52-ci 713 6/2/2016
0.2.0.51-ci 738 6/2/2016
0.2.0.50-ci 744 6/2/2016
0.2.0.49 1,519 5/31/2016
0.2.0.48-ci 782 5/31/2016
0.2.0.46-ci 755 5/31/2016
0.2.0.45 1,334 5/31/2016
0.2.0.44 1,334 5/31/2016
0.2.0.43 1,331 5/31/2016
0.2.0.42 1,340 5/30/2016
0.2.0.41 1,339 5/30/2016
0.2.0.40 1,368 5/30/2016
0.2.0.39 1,351 5/30/2016
0.2.0.38 1,352 5/30/2016
0.2.0.37 1,290 5/30/2016
0.2.0.36 1,307 5/25/2016
0.2.0.35 1,334 5/24/2016
0.2.0.34 1,366 5/24/2016
0.2.0.33 2,156 5/24/2016
0.2.0.32-ci 746 5/24/2016
0.1.26-ci 767 5/24/2016
0.1.24-ci 758 5/24/2016
0.1.19-ci 738 5/24/2016