System.Numerics.Tensors 0.1.0

The ID prefix of this package has been reserved for one of the owners of this package by NuGet.org. Prefix Reserved
.NET Standard 1.1
There is a newer prerelease version of this package available.
See the version list below for details.

Requires NuGet 2.8.6 or higher.

dotnet add package System.Numerics.Tensors --version 0.1.0
NuGet\Install-Package System.Numerics.Tensors -Version 0.1.0
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="System.Numerics.Tensors" Version="0.1.0" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add System.Numerics.Tensors --version 0.1.0
#r "nuget: System.Numerics.Tensors, 0.1.0"
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install System.Numerics.Tensors as a Cake Addin
#addin nuget:?package=System.Numerics.Tensors&version=0.1.0

// Install System.Numerics.Tensors as a Cake Tool
#tool nuget:?package=System.Numerics.Tensors&version=0.1.0

Tensor class which represents and extends multi-dimensional arrays.

Commonly Used Types:
System.Numerics.Tensors.Tensor<T>
System.Numerics.Tensors.CompressedSparseTensor<T>
System.Numerics.Tensors.DenseTensor<T>
System.Numerics.Tensors.SparseTensor<T>

Product Versions
.NET net5.0 net5.0-windows net6.0 net6.0-android net6.0-ios net6.0-maccatalyst net6.0-macos net6.0-tvos net6.0-windows net7.0 net7.0-android net7.0-ios net7.0-maccatalyst net7.0-macos net7.0-tvos net7.0-windows
.NET Core netcoreapp1.0 netcoreapp1.1 netcoreapp2.0 netcoreapp2.1 netcoreapp2.2 netcoreapp3.0 netcoreapp3.1
.NET Standard netstandard1.1 netstandard1.2 netstandard1.3 netstandard1.4 netstandard1.5 netstandard1.6 netstandard2.0 netstandard2.1
.NET Framework net45 net451 net452 net46 net461 net462 net463 net47 net471 net472 net48 net481
MonoAndroid monoandroid
MonoMac monomac
MonoTouch monotouch
Tizen tizen30 tizen40 tizen60
Universal Windows Platform uap uap10.0
Windows Phone wpa81
Windows Store netcore netcore45 netcore451
Xamarin.iOS xamarinios
Xamarin.Mac xamarinmac
Xamarin.TVOS xamarintvos
Xamarin.WatchOS xamarinwatchos
Compatible target framework(s)
Additional computed target framework(s)
Learn more about Target Frameworks and .NET Standard.
  • .NETCoreApp 2.1

    • No dependencies.
  • .NETFramework 4.5

  • .NETStandard 1.1

  • .NETStandard 2.0

  • MonoAndroid 1.0

    • No dependencies.
  • MonoTouch 1.0

    • No dependencies.
  • Portable Class Library (.NETFramework 4.5, Windows 8.0, WindowsPhoneApp 8.1)

  • UAP 10.0.16300

    • No dependencies.
  • Windows 8.0

  • WindowsPhoneApp 8.1

  • Xamarin.iOS 1.0

    • No dependencies.
  • Xamarin.Mac 2.0

    • No dependencies.
  • Xamarin.TVOS 1.0

    • No dependencies.
  • Xamarin.WatchOS 1.0

    • No dependencies.

NuGet packages (6)

Showing the top 5 NuGet packages that depend on System.Numerics.Tensors:

Package Downloads
SiaNet.Engine

Dependency package for SiaNet and its backends.

SiaNet

Developing a C# wrapper to help developer easily create and train deep neural network models. Easy to use library, just focus on research Multiple backend - ArrayFire (In Progress), TensorSharp (In Progress), CNTK (Not Started), TensorFlow (Not Started), MxNet (Not Started) CUDA/ OpenCL support for some of the backends Light weight libray, built with .NET standard 2.0 Code well structured, easy to extend if you would like to extend with new layer, loss, metrics, optimizers, constraints, regularizer

AutoTensor

Automatic tensor conversion for .NET

CensorCore

The core package for CensorCore, a flexible and modular framework for censoring NSFW images based on the NudeNet ML model.

Aiinfra.OnnxRuntime.Gpu

This package contains ONNX Runtime for .Net platforms

GitHub repositories (5)

Showing the top 5 popular GitHub repositories that depend on System.Numerics.Tensors:

Repository Stars
dotnet/TorchSharp
A .NET library that provides access to the library that powers PyTorch.
allisterb/jemalloc.NET
A native memory manager for .NET
microsoft/CryptoNets
CryptoNets is a demonstration of the use of Neural-Networks over data encrypted with Homomorphic Encryption. Homomorphic Encryptions allow performing operations such as addition and multiplication over data while it is encrypted. Therefore, it allows keeping data private while outsourcing computation (see here and here for more about Homomorphic Encryptions and its applications). This project demonstrates the use of Homomorphic Encryption for outsourcing neural-network predictions. The scenario in mind is a provider that would like to provide Prediction as a Service (PaaS) but the data for which predictions are needed may be private. This may be the case in fields such as health or finance. By using CryptoNets, the user of the service can encrypt their data using Homomorphic Encryption and send only the encrypted message to the service provider. Since Homomorphic Encryptions allow the provider to operate on the data while it is encrypted, the provider can make predictions using a pre-trained Neural-Network while the data remains encrypted throughout the process and finaly send the prediction to the user who can decrypt the results. During the process the service provider does not learn anything about the data that was used, the prediction that was made or any intermediate result since everything is encrypted throughout the process. This project uses the Simple Encrypted Arithmetic Library SEAL version 3.2.1 implementation of Homomorphic Encryption developed in Microsoft Research.
Amine-Smahi/C-Sharp-Learning-Journey
Some of the projects i made when starting to learn c#, winfroms and wpf
dotnet-architecture/MNISTTensorCNTK
Version Downloads Last updated
8.0.0-preview.2.23128.3 44 3/14/2023
8.0.0-preview.1.23110.8 106 2/21/2023
7.0.0-rtm.22518.5 2,167 11/7/2022
7.0.0-rc.2.22472.3 355 10/11/2022
7.0.0-rc.1.22426.10 291 9/14/2022
7.0.0-preview.7.22375.6 168 8/9/2022
7.0.0-preview.6.22324.4 183 7/12/2022
7.0.0-preview.5.22301.12 147 6/14/2022
7.0.0-preview.4.22229.4 195 5/10/2022
7.0.0-preview.3.22175.4 178 4/13/2022
7.0.0-preview.2.22152.2 152 3/14/2022
7.0.0-preview.1.22076.8 138 2/17/2022
6.0.2-mauipre.1.22102.15 101 2/15/2022
6.0.2-mauipre.1.22054.8 137 1/19/2022
6.0.0-rtm.21522.10 1,897 11/8/2021
6.0.0-rc.2.21480.5 1,814 10/12/2021
6.0.0-rc.1.21451.13 150 9/14/2021
6.0.0-preview.7.21377.19 194 8/10/2021
6.0.0-preview.6.21352.12 161 7/14/2021
6.0.0-preview.5.21301.5 168 6/15/2021
6.0.0-preview.4.21253.7 153 5/24/2021
6.0.0-preview.3.21201.4 228 4/8/2021
6.0.0-preview.2.21154.6 210 3/11/2021
6.0.0-preview.1.21102.12 153 2/12/2021
5.0.0-preview.8.20407.11 632 8/25/2020
5.0.0-preview.7.20364.11 242 7/21/2020
5.0.0-preview.6.20305.6 284 6/25/2020
5.0.0-preview.5.20278.1 244 6/10/2020
5.0.0-preview.4.20251.6 273 5/18/2020
5.0.0-preview.3.20214.6 244 4/23/2020
5.0.0-preview.2.20160.6 299 4/2/2020
5.0.0-preview.1.20120.5 283 3/16/2020
0.2.0-preview7.19362.9 451 7/23/2019
0.2.0-preview6.19303.8 324 6/12/2019
0.2.0-preview6.19264.9 267 9/4/2019
0.2.0-preview5.19224.8 314 5/6/2019
0.2.0-preview4.19212.13 312 4/18/2019
0.2.0-preview3.19128.7 366 3/6/2019
0.2.0-preview.19073.11 365 1/29/2019
0.2.0-preview.18571.3 477 12/3/2018
0.1.0 1,518,509 11/14/2018