Citms.OnnxRuntime.Gpu-arm64 1.16.3.1

dotnet add package Citms.OnnxRuntime.Gpu-arm64 --version 1.16.3.1                
NuGet\Install-Package Citms.OnnxRuntime.Gpu-arm64 -Version 1.16.3.1                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="Citms.OnnxRuntime.Gpu-arm64" Version="1.16.3.1" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add Citms.OnnxRuntime.Gpu-arm64 --version 1.16.3.1                
#r "nuget: Citms.OnnxRuntime.Gpu-arm64, 1.16.3.1"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install Citms.OnnxRuntime.Gpu-arm64 as a Cake Addin
#addin nuget:?package=Citms.OnnxRuntime.Gpu-arm64&version=1.16.3.1

// Install Citms.OnnxRuntime.Gpu-arm64 as a Cake Tool
#tool nuget:?package=Citms.OnnxRuntime.Gpu-arm64&version=1.16.3.1                

Microsoft.ML.OnnxRuntime.Gpu ARM64

基于ARM服务器编译OnnxRuntime V1.16.3版本GPU依赖库,编译步骤如下

1.下载V1.16.3版本源码

git clone -b v1.16.3 --depth 1 https://github.com/microsoft/onnxruntime.git
git submodule update --init --recursive --progress

2.修改ARM64 cuda dockerfile文件

#进入到下载好的源码目录
cd onnxruntime

cd dockerfiles

#开始修改Dockerfile.cuda文件
  • 原始dockerfile文件内容
# --------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------
# Dockerfile to run ONNXRuntime with CUDA, CUDNN integration

# nVidia cuda 11.4 Base Image
FROM nvcr.io/nvidia/cuda:12.1.1-cudnn8-devel-ubuntu22.04
ENV         DEBIAN_FRONTEND=noninteractive
MAINTAINER Changming Sun "chasun@microsoft.com"
ADD . /code

ENV PATH /usr/local/nvidia/bin:/usr/local/cuda/bin:${PATH}
RUN apt-get update && apt-get install -y --no-install-recommends python3-dev ca-certificates g++ python3-numpy gcc make git python3-setuptools python3-wheel python3-packaging python3-pip aria2 && aria2c -q -d /tmp -o cmake-3.26.3-linux-x86_64.tar.gz https://github.com/Kitware/CMake/releases/download/v3.26.3/cmake-3.26.3-linux-x86_64.tar.gz && tar -zxf /tmp/cmake-3.26.3-linux-x86_64.tar.gz --strip=1 -C /usr

RUN cd /code && python3 -m pip install -r tools/ci_build/github/linux/docker/inference/x64/python/cpu/scripts/requireme\
nts.txt && /bin/bash ./build.sh --allow_running_as_root --skip_submodule_sync --cuda_home /usr/local/cuda --cudnn_home /usr/lib/x86_64-linux-gnu/ --use_cuda --config Release --build_wheel --update --build --parallel --cmake_extra_defines ONNXRUNTIME_VERSION=$(cat ./VERSION_NUMBER) 'CMAKE_CUDA_ARCHITECTURES=52;60;61;70;75;86'

FROM nvcr.io/nvidia/cuda:12.1.1-cudnn8-runtime-ubuntu22.04
ENV         DEBIAN_FRONTEND=noninteractive
COPY --from=0 /code/build/Linux/Release/dist /root
COPY --from=0 /code/dockerfiles/LICENSE-IMAGE.txt /code/LICENSE-IMAGE.txt
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update && apt-get install -y --no-install-recommends libstdc++6 ca-certificates python3-setuptools python3-wheel python3-pip unattended-upgrades && unattended-upgrade && python3 -m pip install /root/*.whl && rm -rf /root/*.whl
  • 修改后的文件内容
# --------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------
# Dockerfile to run ONNXRuntime with CUDA, CUDNN integration

# nVidia cuda 11.4 Base Image
FROM nvcr.io/nvidia/cuda:11.4.3-cudnn8-devel-ubuntu20.04
ENV         DEBIAN_FRONTEND=noninteractive
MAINTAINER Changming Sun "chasun@microsoft.com"
ADD . /code

ENV PATH /usr/local/nvidia/bin:/usr/local/cuda/bin:${PATH}
RUN apt-get update && apt-get install -y --no-install-recommends python3-dev ca-certificates g++ python3-numpy gcc make git python3-setuptools python3-wheel python3-packaging python3-pip aria2 && aria2c -q -d /tmp -o cmake-3.26.3-linux-aarch64.tar.gz https://github.com/Kitware/CMake/releases/download/v3.26.3/cmake-3.26.3-linux-aarch64.tar.gz && tar -zxf /tmp/cmake-3.26.3-linux-aarch64.tar.gz --strip=1 -C /usr

RUN  /bin/bash ./build.sh --allow_running_as_root --skip_submodule_sync --tensorrt_home /usr/lib/aarch64-linux-gnu --cuda_home /usr/local/cuda --cudnn_home /usr/lib/aarch64-linux-gnu/ --use_cuda --config Release --build_shared_lib --build_wheel --update --build --parallel --cmake_extra_defines ONNXRUNTIME_VERSION=$(cat ./VERSION_NUMBER) 'CMAKE_CUDA_ARCHITECTURES=52;60;61;70;75;86'
修改点 🐳 修改前📌 修改后
基础镜像 nvcr.io/nvidia/cuda:12.1.1-cudnn8-devel-ubuntu22.04 nvcr.io/nvidia/cuda:11.4.3-cudnn8-devel-ubuntu20.04
cmake下载地址 cmake-3.26.3-linux-x86_64.tar.gz cmake-3.26.3-linux-aarch64.tar.gz
build.sh cuda+cuDNN路径 /usr/lib/x86_64-linux-gnu /usr/lib/aarch64-linux-gnu

3.开始编译

docker build -t onnxruntime-cuda-build -f Dockerfile.cuda ..

整个执行过程预计2小时,镜像构建完成后,启动容器将文件拷备出来

docker run --rm -it onnxruntime-cuda-build     /bin/bash

# 新开一个shell窗口,其中f96cb33b6482为刚启动的容器id,可通过docker ps进行查看
docker cp f96cb33b6482:/code/build/Linux/Release /root/linux-onnx-cpu

  • 编译后的文件,全都拷贝到宿主机 /root/linux-onnx-cpu目录中了 libonnxruntime.so libonnxruntime_providers_cuda.so libonnxruntime_providers_shared.so 这三个文件是我们需要的最终文件
Product Compatible and additional computed target framework versions.
.NET net5.0 was computed.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed. 
.NET Core netcoreapp2.0 was computed.  netcoreapp2.1 was computed.  netcoreapp2.2 was computed.  netcoreapp3.0 was computed.  netcoreapp3.1 was computed. 
.NET Standard netstandard2.0 is compatible.  netstandard2.1 was computed. 
.NET Framework net461 was computed.  net462 was computed.  net463 was computed.  net47 was computed.  net471 was computed.  net472 was computed.  net48 was computed.  net481 was computed. 
MonoAndroid monoandroid was computed. 
MonoMac monomac was computed. 
MonoTouch monotouch was computed. 
Tizen tizen40 was computed.  tizen60 was computed. 
Xamarin.iOS xamarinios was computed. 
Xamarin.Mac xamarinmac was computed. 
Xamarin.TVOS xamarintvos was computed. 
Xamarin.WatchOS xamarinwatchos was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.
  • .NETStandard 2.0

    • No dependencies.

NuGet packages (2)

Showing the top 2 NuGet packages that depend on Citms.OnnxRuntime.Gpu-arm64:

Package Downloads
Citms.PaddleInference.Gpu

This project is based on Citms.Paddle,use ONNX, Including character recognition, text detection , It can be used without network and has high recognition accuracy.

Citms.YoloV8.Gpu

Use YOLOv8 in real-time for object detection, instance segmentation, pose estimation and image classification, via ONNX Runtime

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
1.16.3.1 855 5/17/2024
1.16.3 537 5/17/2024